2501/206 TOOL ROOM PROCESSES TECHNOLOGY II AND METROLOGY Oct/Nov. 2022

Time: 3 hours



### THE KENYA NATIONAL EXAMINATIONS COUNCIL

## DIPLOMA IN MECHANICAL ENGINEERING (PRODUCTION OPTION)

### MODULE II

TOOL ROOM PROCESSES TECHNOLOGY II AND METROLOGY

3 hours

#### INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Mathematical tables/ Scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer FIVE questions taking at least TWO questions from each section.

All questions carry equal marks.

Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council

Turn over

# SECTION A: TOOL ROOM PROCESSES TECHNOLOGY II

Answer at least TWO questions from this section.

| 1.   | (a)   | Describe each of the following types of chips formed in metal cutting and state two conditions that favour their formation: |           |  |  |  |  |  |  |  |  |  |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|--|
|      |       | (i) continuous;<br>(ii) segmented.                                                                                          | (6 marks) |  |  |  |  |  |  |  |  |  |
|      | (b)   | With the aid of a sketch, explain the forces that act at the cutting point of a cutt<br>during a turning operation.         |           |  |  |  |  |  |  |  |  |  |
|      | (c) , | State two advantages and two limitations of broaching.                                                                      | (4 marks) |  |  |  |  |  |  |  |  |  |
|      | (d)   | Illustrate the vertical pull up broaching,                                                                                  | (5 marks) |  |  |  |  |  |  |  |  |  |
| 2.   | (a)   | Outline the procedure for cutting a spur gear on a milling machine.                                                         | (8 marks) |  |  |  |  |  |  |  |  |  |
|      | (b)   | List three advantages of lectrochemical machining process.     State two applications of electrochemical machining process. | (5 marks) |  |  |  |  |  |  |  |  |  |
|      | (c)   | (i) Illustrate the abrasive jet machine set up. (ii) Explain the abrasive jet machining process.                            | (7 marks) |  |  |  |  |  |  |  |  |  |
| 3.   | (a)   | (i) List three advantages of centreless grinding.  (ii) With the aid of a sketch, describe the infeed centreless grinding.  | (9 marks) |  |  |  |  |  |  |  |  |  |
|      | (b)   | Illustrate each of the following types of grinding:                                                                         |           |  |  |  |  |  |  |  |  |  |
|      |       | (i) traverse cylindrical grinding;<br>(ii) internal cylindrical grinding.                                                   | (6 marks) |  |  |  |  |  |  |  |  |  |
|      | (c)   | With the aid of a sketch describe vertical spindle rotary table surface grinder.                                            | (5 marks) |  |  |  |  |  |  |  |  |  |
| 4.   | (a)   | Explain each of the following parts of a press:                                                                             |           |  |  |  |  |  |  |  |  |  |
|      |       | (i) die;<br>(ii) upper shoe;                                                                                                |           |  |  |  |  |  |  |  |  |  |
|      |       | (iii) back-up plate;<br>(iv) stripper.                                                                                      | (6 marks) |  |  |  |  |  |  |  |  |  |
|      | (b)   | With aid of a sketch, describe the operation of a tripple action press.                                                     | (6 marks) |  |  |  |  |  |  |  |  |  |
|      | (c)   | (i) State two reasons for boring operation. (ii) Illustrate boring operation.                                               | (5 marks) |  |  |  |  |  |  |  |  |  |
|      | (d)   | Illustrate grinding as a gear finishing process.                                                                            | (3 marks) |  |  |  |  |  |  |  |  |  |
| 2000 |       |                                                                                                                             |           |  |  |  |  |  |  |  |  |  |

## SECTION B: METROLOGY

Answer at least TWO questions from this section.

- (a) Define each of the following terms as applied to gear measurement:
  - (i) circular pitch;
  - (ii) tooth thickness.

(4 marks)

(b) Figure 1 shows a gear tooth measurement at constant cord. Show that:

$$W = \pi M \cos 2\psi$$
  
and

$$h = M \left( 1 - \frac{\pi}{4} \cos \psi \sin \psi \right)$$

(8 marks)



- (c) A plug gauge and a ring gauge are to be used to check the size of a hole and shaft combination given as 48 H/k6. Use BS 4500A data sheet provided to determine:
  - the maximum and minimum limits of both shaft and hole;
  - (ii) the diameters of the GO plug gauge and that of ring gauge. (5 marks)
- (d) Sketch a double jaw caliper gauge.

(3 marks)

6. (a) Define a comparator.

(2 marks)

(b) List three classes of general work comparators.

(3 marks)

- (c) (i) List three requirements for a comparator to work effectively.
  - (ii) With the aid of a sketch, describe the construction and operation of the Johansen Mikrokator.

(II marks)

- (d) A 105 mm sine bar is to be used to check the angle  $\theta$  of the component shown in Figure 2 using two piles of slip gauges. One pile of slip gauge is 19.54 mm high and the other one is 40.28 mm.
  - (i) Illustrate the set up for checking the angle θ.
  - (ii) Calculate the angle θ on the component.

(4 marks)



Fig. 2

7. (a) Explain why white light is not suitable for interferometry.

(3 marks)

- (b) With the aid of a diagram, describe the constrution and operation of the NPL flatness interferemeter. (10 marks)
- (c) List three benefits of statistical quality control.

(3 marks)

- (d) Explain how a quality inspector may apply statistical quality control in the course of his duty when bushes of specified tolerenaced diameters are bing produced in his workshop. (4 marks)
- (a) Explain how control of surface texture affets the following in machined components:
  - (i) fatigue life;
  - (ii) bearing properties.

(4 marks)

(5 marks)

- (b) (i) Define standardisation.
  - (ii) Explain three benefits of interchangeability in manufacturing.
- (c) Illustrate the set up for testing the flatness of a machined component using a dial test indicator. (5 marks)
- (d) Use a sketch to determine the measurement over wires for M30 × 3.5 ISO metric thread using a 2 mm diameter wire. (6 marks)

| 480 49            | 315 35     | 250 28     |             | 8 8 8           | 00 00          | e 8       | 8 8 | ia is | 0 0 | 1   | 1               | 0       | -             |     | Days and the second |                   |
|-------------------|------------|------------|-------------|-----------------|----------------|-----------|-----|-------|-----|-----|-----------------|---------|---------------|-----|---------------------|-------------------|
|                   |            | •          | * * * *     |                 |                |           |     |       |     | 10  | 1               | THE THE |               |     | *                   |                   |
| 140               | 176        | - 1        | 植           | **              |                | **        | -   | -6-1  |     |     | å               | 10 10   |               | 1   | <b>3</b> 21         |                   |
| \$8 + PE          | 150        | 15         | -5          | -1              | °,             | ##<br>*** | *   | e de  |     | a a |                 | 101     | -             | a 💹 | 2                   |                   |
| 8B                | ## W       | **         | -2<br>-2    | **              | 報達             | 1.00      | -   | MA UN | H   |     | 1               |         |               |     |                     | Chemants          |
| 100               | - Miles    | - BX       | 1 A<br>WE   | ##              | 4              | EX.       |     | 1100  | -   | -   |                 | 10 40   | -             |     |                     | The second second |
| 45<br>11<br>88    | 74.<br>17. | 1.0<br>1.0 | *E          | -6<br>-11<br>92 | **<br>##       | 76-<br>78 | 12  |       |     | -   | 3               |         | 1             |     | : 11:               |                   |
| #- 13+            | ***        | ##<br>##   | **          | 4 to 1          | 08<br>-E       | - 1 st    |     | - is  |     | +   | A 191.0 mm (see | 100     | Yahana        |     | : 11:               |                   |
| +4                | 19         | - 1        | 4           | 20              |                | **        |     |       | 0.5 | +   | 9 mm mm 9       | N.      | Tayona        |     | 111                 |                   |
| **                | **         | 1          | ***         | 500<br>P.E.     | *15            | 13 Q      | **  |       | 1   | +   | - 8             | E.      | 100           |     |                     | Transment to      |
| 1.1<br>8.8<br>7.1 | A. B.      | **         | ===<br>==== | **              | #-<br>86       | ++<br>8%  | 133 | 1     | tar |     | 9               | 1       | 1             |     | 20.<br>20.<br>20.   |                   |
| 110               | 50         | 17<br>88   | ***<br>***  | 11<br>22        | 11<br>11<br>11 | 1.4<br>50 | 32E | Н     |     |     | i               | 1       | 100.001       |     | 812                 | Scholaryson St.   |
|                   |            |            |             |                 |                |           | -6  | :::   |     |     |                 | F       | District :    |     | 1                   | 180               |
|                   |            | 400        | 22 20 30    | -               |                |           |     |       | 0   |     | 1               | 9.0     | Provided time |     |                     | The second        |

(40 - 000 to

SELECTED ISO FITS-HOLE BASIS

THIS IS THE LAST PRINTED PAGE.

2501/206 Oct/Nov. 2022